BIOSYNTHESIS OF A RETROCHALCONE, ECHINATIN: A FEEDING STUDY WITH ADVANCED PRECURSORS¹

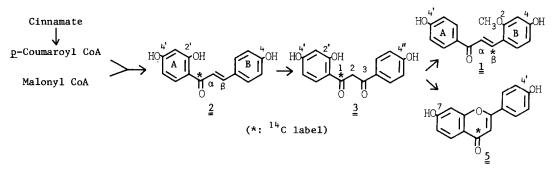
Shin-ichi Ayabe and Tsutomu Furuya*

School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, 108 Japan

<u>Abstract</u>: Feeding experiments with ¹⁴C-labeled compounds established that a dibenzoylmethane, licodione($\underline{3}$), is an obligate intermediate in the biosynthesis of a retrochalcone, echinatin($\underline{1}$).

Echinatin($\underline{1}$)^{2a,c}, a component of the tissue culture of <u>Glycyrrhiza</u> <u>echinata</u>, has been proven by tracer experiments³ to be a retrochalcone, in which origins of two aromatic rings are reversed to normal flavonoids, i.e., the A ring of $\underline{1}$ originates from cinnamate while the B ring is formed via acetate-malonate pathway. Incorporation of [³H]-isoliquiritigenin($\underline{2}$) into $\underline{1}^3$ has suggested that the biosynthetic course involves the inversion of α,β -unsaturated ketone unit. Isolation of a new dibenzoylmethane, licodione($\underline{3}$)^{2b,c}, has led us to assume that $\underline{3}$ may be an intermediate of this process. This view was strongly supported by the detection of an <u>O</u>-methyltransferase(LMT)⁴ which catalyzes the position specific 2'-<u>O</u>-methylation of $\underline{3}$ in the cells, but a direct proof of biosynthetic linkage between $\underline{1}$ and $\underline{3}$ has been lacking. Here we report a feeding study with $\underline{3}$ and other compounds labeled with ¹⁴C resulting in the establishment of this pathway.

¹⁴C-Labeled compounds were synthesized from [carbony1-¹⁴C]-resacetophenone($\frac{4}{2}$) which was prepared from resorcinol and CH₃¹⁴COOH in the presence of ZnCl₂. Acylation of [carbony1-¹⁴C]-4-<u>O</u>-benzy1-<u>4</u> by <u>p</u>-benzyloxybenzoyl chloride followed by a rearrangement mediated by alkali and hydrogenolytic deprotection gave [1-¹⁴C]-<u>3</u> (19% yield from <u>4</u>), and treatment of this compound with HCl afforded [carbony1-¹⁴C]-7,4'-dihydroxyflavone(<u>5</u>)(52% yield). Condensation of [carbony1-¹⁴C]-4-<u>O</u>-methoxymethy1-<u>4</u> and <u>p</u>-methoxymethoxybenzaldehyde followed by acid treatment to remove the protecting group gave [carbony1-¹⁴C]-<u>2</u> (57% yield from <u>4</u>).


Labeled compounds were fed separately to suspension culture of 3 weeks old <u>G.echinata</u> callus and were incubated for 2 days. Echinatin(<u>1</u>) was isolated and recrystallized with cold carrier to a constant specific activity. Table 1 shows clearly that <u>3</u> was effectively incorporated into <u>1</u> while <u>2</u> and <u>5</u> were incorporated but to less extents. Echinatin from the cells fed with <u>3</u> was further degraded with alkali to yield <u>p</u>-hydroxyacetophenone(<u>6</u>) and 2-methoxy-4-hydroxybenzaldehyde(<u>7</u>). Radioactivity was shown to exist only in <u>7</u> within an experimental error (2.7% in <u>6</u> and 104% in <u>7</u> of original activity of <u>1</u>). This indicates that the ¹⁴C label at carbonyl in <u>3</u> was intactly converted into the label at β -position of <u>1</u>. Thus, the last steps of <u>1</u> biosynthesis would consist of the following reactions; 2'-<u>O</u>-methylation of <u>3</u> (catalyzed by LMT), reduction of 1-keto group to a benzyl alcohol and dehydration to yield the retrochalcone.

A relatively low incorporation of $\frac{5}{2}$ into $\frac{1}{2}$ compared with that of $\frac{2}{2}$ implies that $\frac{2}{2}$ is the preferred precursor of $\frac{3}{2}$, and hydration of $\frac{5}{2}$, if present, is a minor pathway to form licodione $(\frac{3}{2})^5$. In contrast, $\frac{5}{2}$ isolated from the cells fed with $\frac{3}{2}$ is considerably radioactive (see Table

1), suggesting that dehydration of $\underline{3}$ is involved in $\underline{5}$ biosynthesis. Metabolic role of dibenzoy1 methanes as precursors of flavones has been repeatedly postulated 7 , and the result presented here is the first in vivo demonstration of the conversion of a dibenzoylmethane into a flavone.

Table 1. Incorporation of ¹⁴C-labeled compounds into echinatin and 7,4'-dihydroxyflavone in G.echinata cell culture

	Precursors (Specific activity; 1.6 × 10 ⁹ dpm/mM)			
	[1- ¹⁴ C]-Licodione(<u>3</u>)		[Carbony1- ¹⁴ C]-Iso- liquiritigenin(<u>2</u>)	[Carbony1- ¹⁴ C]-7,4'- Dihydroxyflavone(<u>5</u>)
Compound isolated	Echinatin($\frac{1}{2}$)	7,4'-Dihydroxy- flavone(<u>5</u>)	Echinatin($\underline{1}$)	Echinatin($\underline{1}$)
Specific activity (dpm/mM)	8.2 x 10 ⁶	1.6 x 10 ⁶	6.8 x 10 ⁵	2.2×10^5
Specific incorpo- ration ratio (%)	0.51	0.097	0.043	0.014
Total incorporation ratio (%)	0.25	0.017	0.11	0.006

References and Notes

- 1) Part 35 in the series "Studies on Plant Tissue Cultures". For Part 34, see ref.4.
- 2) a) T.Furuya, M.Hikichi and K.Matsumoto, Tetrahedron Letters, 1971, 2567; b) T.Furuya, S.Ayabe and M.Kobayashi, Tetrahedron Letters, 1976, 2539; c) S.Ayabe, M.Kobayashi, M.Hikichi, K.Matsumoto and T.Furuya, Phytochemistry, <u>19</u>, 2179(1980).
- 3) T.Saitoh, S.Shibata, U.Sankawa, T.Furuya and S.Ayabe, Tetrahedron Letters, 1975, 4463.
- 4) S.Ayabe, T.Yoshikawa, M.Kobayashi and T.Furuya, Phytochemistry, <u>19</u>, 2331(1980).
 5) We have pointed out a possibility^{1C} of a biosynthetic course (liquiritigenin+5+3+1) which does not involve a chalcone intermediate, regarding the absence of $\frac{2}{2}$ in the cell culture and Hahlbrock's previous observation^{6a} that the first obligate intermediate in flavonoid biosynthesis is a flavanone but not a chalcone. Recent correction of "flavanone synthase" to "chalcone synthase"6b and our result described herein made our earlier hypothesis unlikely.
- 6) a) F.Kreuzaler and K.Hahlbrock, Eur.J.Biochem., <u>56</u>, 205(1975); b) W.Heller and K.Hahlbrock, Arch.Biochem.Biophys., 200, 617(1980).
- 7) a) A.H.Williams, Phytochemistry, 18, 1897(1979); b) G.Camele, F.D.Monache, G.D.Monache and G.B.M.Bettolo, Phytochemistry, 19, 707(1980); cf. c) K.Venkataraman, in "The Flavonoids" (ed., J.B.Harborne, T.J.Mabry and H.Mabry), p.279, Chapman and Hall, London(1975).

(Received in Japan 18 February 1981)